Skip to main content

Rocket Lab doubles down on marine booster recovery with next Electron launch

Rocket Lab’s next Electron mission will include another marine recovery attempt of the rocket’s booster, the latest step by the company to advance its reusability program.

The mission, called “Baby Come Back,” will take off from Rocket Lab’s Launch Complex 1 on New Zealand’s Mahia Peninsula. The launch window opens no earlier than July 14. As part of the mission, the Electron rocket will carry several customer payloads to space, include a 4 CubeSat mission for NASA; two radio frequency satellites for Spire Global; and a demonstration satellite for Space Flight Laboratory.

The mission for NASA, dubbed Starling, will test “swarm” satellite technologies, including autonomous maneuvering and onboard relative navigation between spacecraft.

After launch, Rocket Lab will attempt what it calls a “marine recovery” of the Electron booster, using a parachute to enable a controlled splashdown of the stage in the ocean and fishing it out with a customized vessel. The booster will then be transported back to the company’s production complex for analysis and – hopefully – refurbishment for future flights.

Rocket Lab has developed in parallel two separate techniques to recover Electron boosters: marine recovery, as outlined above, and catching the booster mid-air using a specialized helicopter. The latter is about as challenging as it sounds; the company has attempted the helicopter method twice, with the first attempt ending in a partial success (the helicopter grabbed hold of the booster, but released it immediately). During the second attempt, one of the helicopter pilots called off the catch due to a momentary loss of telemetry data from the booster.

The company has recovered the stage from the ocean during several previous missions. Rocket Lab gave the green light to launch a pre-flown Rutherford engine in April, the first time one of the company’s Rutherford engines will see space twice. In the announcement about the engine re-use, Rocket Lab said that Electron withstands ocean splashdown well.

“Extensive analysis of returned stages shows that Electron withstands an ocean splashdown and engineers expect future complete stages to pass qualification and acceptance testing for re-flight with minimal refurbishment,” the company said in the statement. “As a result, Rocket Lab is moving forward with marine operations as the primary method of recovering Electron for re-flight.”

Marine recovery is certainly more straightforward, and if Rocket Lab can figure out how to refurbish the booster components at relatively low cost, it could prove to be a winning technique for the company.

Rocket Lab doubles down on marine booster recovery with next Electron launch by Aria Alamalhodaei originally published on TechCrunch



source https://techcrunch.com/2023/06/22/rocket-lab-doubles-down-on-marine-booster-recovery-with-next-electron-launch/

Comments

Popular posts from this blog

Apple’s AI Push: Everything We Know About Apple Intelligence So Far

Apple’s WWDC 2025 confirmed what many suspected: Apple is finally making a serious leap into artificial intelligence. Dubbed “Apple Intelligence,” the suite of AI-powered tools, enhancements, and integrations marks the company’s biggest software evolution in a decade. But unlike competitors racing to plug AI into everything, Apple is taking a slower, more deliberate approach — one rooted in privacy, on-device processing, and ecosystem synergy. If you’re wondering what Apple Intelligence actually is, how it works, and what it means for your iPhone, iPad, or Mac, you’re in the right place. This article breaks it all down.   What Is Apple Intelligence? Let’s get the terminology clear first. Apple Intelligence isn’t a product — it’s a platform. It’s not just a chatbot. It’s a system-wide integration of generative AI, machine learning, and personal context awareness, embedded across Apple’s OS platforms. Think of it as a foundational AI layer stitched into iOS 18, iPadOS 18, and m...

The Silent Revolution of On-Device AI: Why the Cloud Is No Longer King

Introduction For years, artificial intelligence has meant one thing: the cloud. Whether you’re asking ChatGPT a question, editing a photo with AI tools, or getting recommendations on Netflix — those decisions happen on distant servers, not your device. But that’s changing. Thanks to major advances in silicon, model compression, and memory architecture, AI is quietly migrating from giant data centres to the palm of your hand. Your phone, your laptop, your smartwatch — all are becoming AI engines in their own right. It’s a shift that redefines not just how AI works, but who controls it, how private it is, and what it can do for you. This article explores the rise of on-device AI — how it works, why it matters, and why the cloud’s days as the centre of the AI universe might be numbered. What Is On-Device AI? On-device AI refers to machine learning models that run locally on your smartphone, tablet, laptop, or edge device — without needing constant access to the cloud. In practi...

Max Q: Psyche(d)

In this issue: SpaceX launches NASA asteroid mission, news from Relativity Space and more. © 2023 TechCrunch. All rights reserved. For personal use only. from TechCrunch https://ift.tt/h6Kjrde via IFTTT