Skip to main content

MIT’s new thread-like robots could travel through blood vessels in the brain for more effective surgery

MIT has developed robotic thread that could make existing the least invasive current brain surgery techniques even less so, and potentially make it easier and more accessible to treat brain blood vessel issues like blockages and lesions than can cause aneurysms and strokes.

The new development from MIT researchers combines robotics with current endovascular (ie. within blood vessel) surgery techniques, reducing the risks associated with guiding incredibly thin wires through complicated brain blood vessel pathways. Today, this type of procedure, which is much less invasive than past methods of brain surgery, nonetheless requires an incredibly skilled surgeon to guide the wire manually. It’s a very diffucl surgery for surgeons, and it also means that they’re exposed to radiation from the X-rays required to provide a view of the path they’re weaving through the patient’s brain.

These ‘robot-threads’ developed by MIT takes research done on so-called ‘hydrogels,’ which are materials made mostly of water that work well within the human body. At the thread’s core is a material called ‘nitinol’ that can bend, and is springy, meaning it has a natural tendency to spring back to its original shape when bent.

The material is coated in an ink-like substance, which is then bonded with a hydrogel, regulating in a magnetically manipulable material that can still surviving within the human body. Using a large magnet, the researchers could then steer the thread through a demonstration obstacle course they built to show off how it could work in a surgical situation.

MIT’s researchers also note that you can modify the core construction of the robot threads with other materials to serve different functions, and showed this by replacing the nitinol at its centre with a fiber optic filament, which in practice could be used to transmit laser light to blast away a blockage in a brain blood vessel.

The tech could be put to use to make it so that surgeons can operate the threads from a safe distance – or even remotely. This would not only be safer for the doctors, but could also open up more access to this highly specialized kind of surgery for patients, too.



from TechCrunch https://ift.tt/2UdSPpw
via IFTTT

Comments

Popular posts from this blog

Apple’s AI Push: Everything We Know About Apple Intelligence So Far

Apple’s WWDC 2025 confirmed what many suspected: Apple is finally making a serious leap into artificial intelligence. Dubbed “Apple Intelligence,” the suite of AI-powered tools, enhancements, and integrations marks the company’s biggest software evolution in a decade. But unlike competitors racing to plug AI into everything, Apple is taking a slower, more deliberate approach — one rooted in privacy, on-device processing, and ecosystem synergy. If you’re wondering what Apple Intelligence actually is, how it works, and what it means for your iPhone, iPad, or Mac, you’re in the right place. This article breaks it all down.   What Is Apple Intelligence? Let’s get the terminology clear first. Apple Intelligence isn’t a product — it’s a platform. It’s not just a chatbot. It’s a system-wide integration of generative AI, machine learning, and personal context awareness, embedded across Apple’s OS platforms. Think of it as a foundational AI layer stitched into iOS 18, iPadOS 18, and m...

The Silent Revolution of On-Device AI: Why the Cloud Is No Longer King

Introduction For years, artificial intelligence has meant one thing: the cloud. Whether you’re asking ChatGPT a question, editing a photo with AI tools, or getting recommendations on Netflix — those decisions happen on distant servers, not your device. But that’s changing. Thanks to major advances in silicon, model compression, and memory architecture, AI is quietly migrating from giant data centres to the palm of your hand. Your phone, your laptop, your smartwatch — all are becoming AI engines in their own right. It’s a shift that redefines not just how AI works, but who controls it, how private it is, and what it can do for you. This article explores the rise of on-device AI — how it works, why it matters, and why the cloud’s days as the centre of the AI universe might be numbered. What Is On-Device AI? On-device AI refers to machine learning models that run locally on your smartphone, tablet, laptop, or edge device — without needing constant access to the cloud. In practi...

Max Q: Psyche(d)

In this issue: SpaceX launches NASA asteroid mission, news from Relativity Space and more. © 2023 TechCrunch. All rights reserved. For personal use only. from TechCrunch https://ift.tt/h6Kjrde via IFTTT